Hereditary tyrosinemia. Formation of succinylacetone-amino acid adducts

نویسندگان

  • S Manabe
  • S Sassa
  • A Kappas
چکیده

Succinylacetone (SA) (4,6-dioxoheptanoic acid) is an abnormal metabolite produced in patients with hereditary tyrosinemia as a consequence of an inherited deficiency of fumaryl acetoacetate hydrolase activity. Patients with this disease are associated with a number of abnormalities, including aminoaciduria, proteinuria, liver failure, commonly hepatoma, and decreased GSH concentration in the liver. In the course of our studies of tyrosinemia, we found that the urine of patients with this disorder contains material(s) that absorbs light at 315 nm. We investigated the nature of the 315 nm material in detail. SA was found to react with amino acids and protein nonenzymatically, to form stable adducts at physiological temperature and pH. All SA adducts with amino acids and/or proteins exhibited an absorption peak at 315 nm. Although all amino acids reacted with SA, the most reactive amino acid was lysine (Lys), followed, in order, by glycine, methionine, phenylalanine, serine, alanine, and glutamine. SA-adducts were unstable at pH below 6, while they were made considerably more stable after reduction with NaBH4, suggesting that SA forms an adduct via Schiff base formation. High-performance liquid chromatography (HPLC) analysis of urines from patients with tyrosinemia revealed the existence of SA-glycine, SA-methionine, SA-tyrosine, and SA-phenylalanine. After digestion of urines with proteinase K, three more HPLC peaks appeared, which all corresponded to SA-Lys adducts. TLC analysis of SA-Lys showed that SA-Lys could form as many as seven different adducts. No SA-adduct peaks were observed in HPLC in urines from normal subjects, patients with other forms of aminoaciduria, or patients with the nephrotic syndrome. In addition to amino acids and proteins, SA reacted with reduced glutathione (GSH) and formed a stable adduct. These findings suggest that SA adduct formation with amino acids, GSH, and proteins is a significant process occurring in tyrosinemia, and may account for certain of the pathologic findings in this hereditary disorder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deficient DNA-ligase activity in the metabolic disease tyrosinemia type I.

Hereditary tyrosinemia type I (HT1) is an autosomal recessive inborn error of metabolism caused by the deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolism pathway. This defect results in accumulation of succinylacetone (SA) that reacts with amino acids and proteins to form stable adducts via Schiff base formation, lysine being the most reactive amino acid. HT...

متن کامل

Newborn screening for hepatorenal tyrosinemia: Tandem mass spectrometric quantification of succinylacetone.

BACKGROUND False-positive and false-negative results occur in current newborn-screening programs for hepatorenal tyrosinemia, which measure tyrosine concentrations in blood spots, sometimes in combination with other metabolites, including succinylacetone. We present our experience with a newly described method for succinylacetone quantification in routine newborn screening. METHODS Succinylac...

متن کامل

Tyrosinemia type I: a clinico-laboratory case report.

Progressive hepatocellular dysfunction in a neonate, resulting in elevated serum alpha-fetoprotein together with raised blood levels of tyrosine and methionine, a generalized amino aciduria and the absence of urinary delta-aminolevulinic acid and succinylacetone, suggests a diagnosis of tyrosinemia type Ib. Classical tyrosinemia type I arises from a deficiency of fumarylacetoacetate hydrolase w...

متن کامل

Clinical, biochemical, and genetic analysis of a Korean neonate with hereditary tyrosinemia type 1.

BACKGROUND Hereditary tyrosinemia type 1 (HT1; MIM 276700) is caused by mutations in the fumarylaceto-acetate hydrolase (FAH) gene, and is the most severe disorder associated with the tyrosine catabolic pathway. HT1 is a very rare disorder and no genetically confirmed case of HT1 in Korea has yet been reported. In this study, we present a Korean neonate with clinical and biochemical features of...

متن کامل

Clinical utility of nitisinone for the treatment of hereditary tyrosinemia type-1 (HT-1)

Medical therapy for hereditary hepatorenal tyrosinemia (hereditary tyrosinemia type 1, HT-1) with nitisinone was discovered incidentally, and is a by-product of agrochemistry. It blocks the catabolic pathway of tyrosine, thereby leading to a reduction in the accumulation of toxic metabolites in HT-1. It has to be combined with a low-protein diet supplemented with amino acid mixtures devoid of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 162  شماره 

صفحات  -

تاریخ انتشار 1985